

# Impact of EU ETS on the structure and profitability of the cement industry



#### Impact of EU ETS on the cement industry

#### **CONTENTS**

- What is the EU ETS?
- What has it achieved?
- Impact of ETS on profitability
- CBAM
- Key issues facing the industry





## **EU Emissions Trading System (EU ETS)**

- The EU ETS was launched in 2005 as the world's first major carbon market.
- Phase I (2005-2007): Energy-intensive industries
  - Pricing started at 20-30 per ton but collapsed in 2007
- Phase II (2008-2013):
  - Free allocations > needs
  - Selling excess allocations (about €5bn in profits in Phase II and III).
- Phase III (2013-2020): Market Stability Reserve to address oversupply and stabilize prices
  - Free allocation gradually reduced. By the end of the period, need > free allocations
- Phase IV (2021 on): covers additional sectors, CBAM to take over from free allocations









#### **Cement Industry: Emissions vs Free Allocations**

SURPLUS/DEFICIT

### **EU ETS So Far: What has it Achieved?**

| <ul> <li>Phase III factor at 766 kg CO2 /t for grey clinker,</li> </ul>                                                 | Long Term Evolutio      |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------|-------------------------|--|--|--|--|--|--|
| Part 1 of Phase IV at 693 kg CO2 /t                                                                                     | 880                     |  |  |  |  |  |  |
| <ul> <li>Based on prior 2 years production</li> </ul>                                                                   | 860                     |  |  |  |  |  |  |
| <ul> <li>European cement companies setting ambitious</li> </ul>                                                         | 840                     |  |  |  |  |  |  |
| 2030 targets for scope 1 emissions per ton of                                                                           | 820                     |  |  |  |  |  |  |
| cementitious:                                                                                                           | 800                     |  |  |  |  |  |  |
| <ul> <li>Holcim 420 Kg/t (2023 590 Kg/t)</li> </ul>                                                                     | 780                     |  |  |  |  |  |  |
| <ul> <li>Heidelberg 400 Kg/t (2023 534 Kg/t)</li> </ul>                                                                 | 760                     |  |  |  |  |  |  |
| <ul> <li>Buzzi 500 Kg/t (2023 570 Kg/t)</li> </ul>                                                                      | 740                     |  |  |  |  |  |  |
| <ul> <li>ETS is not the only lever. There are increasingly<br/>strict requirements in public procurement and</li> </ul> | 720                     |  |  |  |  |  |  |
| planning rules on:                                                                                                      | 700                     |  |  |  |  |  |  |
| <ul> <li>Embodied carbon per m<sup>2</sup></li> </ul>                                                                   | 680<br>2005 2007 2009 2 |  |  |  |  |  |  |
| <ul> <li>Reuse of materials</li> </ul>                                                                                  |                         |  |  |  |  |  |  |







### **Impact of ETS on Cement Pricing and Profitability**

- Cement prices increased rapidly in 2022 due to the increased energy costs and have held those gains
- In Northern Europe:
  - Less exposed to import price competition
  - Prices started to rise in 2021 and have risen in line with marginal costs to over €150 per ton and £160 per ton in UK
  - Europe focussed companies (e.g. Breedon, Vicat) saw big increases in profits inn 2022
- The effect of the free allocation is similar to the kiln operation limits in China during 2016-2021.

|      | 140 |   |     |    |                 |    |     |    |   | I | Eu  | Ir | o | 36 | ea  |   |
|------|-----|---|-----|----|-----------------|----|-----|----|---|---|-----|----|---|----|-----|---|
|      | 140 |   |     |    |                 |    |     |    |   |   |     |    |   |    |     |   |
|      | 120 |   |     |    |                 |    |     |    |   |   |     |    |   |    |     |   |
|      | 100 |   |     |    |                 |    |     |    |   |   |     |    |   |    |     |   |
| /t   | 80  |   | _   |    |                 |    |     |    | _ |   |     |    |   |    |     |   |
| Euro | 60  |   |     |    |                 |    |     |    |   |   |     |    |   |    |     |   |
|      | 40  |   |     |    |                 |    |     |    |   |   |     |    |   |    |     |   |
|      | 20  |   |     |    |                 |    |     |    |   |   |     |    |   |    |     |   |
|      | 0   | Q | 1 1 | .9 |                 | Q  | 3 : | 19 |   | Q | 1 2 | 20 |   | Q  | 3 2 |   |
|      |     |   |     |    | ]0 <sup>.</sup> | th | er  |    |   |   | Fu  | el |   |    |     | ł |

Source: On Field Research





#### **CBAM will replace Free Allocaations**

Carbon pricing mechanism designed to prevent carbon leakage replacing free allocations

CBAM is scheduled to begin operation in 2026 with a transitional period from 2023 to 2025

CBAM will require importers to pay a carbon levy on goods that are subject to the EU ETS

The CBAM is intended to be WTOcompatible Cement



Aluminium





Fertilizers



Electricity



Iron and Steel



Hydrogen



#### **CBAM Phase-in**





#### What changes will CBAM bring

| <ul> <li>CBAM will replace free allocation</li> </ul>                                                                                     |     | Carbo     |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| <ul> <li>The average carbon cost for cement sold in<br/>Europe will increase to about €170/t of clinker vs<br/>&lt;€10/t today</li> </ul> | 180 |           |
| <ul> <li>Potential impact of carbon price on the European<br/>industry:</li> </ul>                                                        | 140 |           |
| <ul> <li>Closures of plants: highest carbon intensity and<br/>most expensive to abate</li> </ul>                                          | 120 |           |
| <ul> <li>Huge CAPEX required for pre-calciners, CCUS<br/>and other projects</li> </ul>                                                    | 80  |           |
| <ul> <li>Clinker factor is still high at 77% will see much<br/>more LC3 and use of other SCMs</li> </ul>                                  | 60  |           |
| <ul> <li>Greater substitution of cement with geopolymer<br/>concrete, CLT</li> </ul>                                                      | 40  |           |
| <ul> <li>Leading to higher prices, lower demand</li> </ul>                                                                                | 20  |           |
|                                                                                                                                           |     | 2023 2025 |







### **Key Issues for the European Cement Industry**





Impact of carbon pricing on replacement of clinker by other materials
Supply chain efficiency and digitalisation
Changes in competitive position of plants, based on proximity to carbon storage hubs
Massive Capex required to stay in business

• Contractors are increasingly willing to enter the materials business

Developers are more willing to optimise design and material selection early in projects
The pressure to increase circularity will change the way that developers execute projects

• Public procurement is a major lever to create a market for green products

Carbon pricing can help the industry remain profitable

• We should aim to incentivise a profitable transition to a low carbon future

